WEBINAR

23 MARZO 2023 **ORE 16.30-18.00**

Fertirrigazione di precisione tra aspetti pratici e innovazione

Organizza:

In collaborazione con:

LA GESTIONE DELLA FERTIRRIGAZIONE DELLE COLTURE ORTICOLE IN SERRA

Dr. Paolo Ristuccia, Responsabile Tecnico-Commerciale Raggio Verde Srl

- · Gestiamo la concimazione delle colture orticole in serra in funzione delle specifiche condizioni operative
- Monitoraggio della qualità dell'acqua e della fertilità dei suoli
- Programmare una fertirrigazione proporzionale per gestire al meglio la concentrazione di concime sulla pianta e limitare la salinizzazione dei terreni
- Esempio di piano di concimazione per pomodoro

Gestiamo la concimazione delle colture orticole in serra in funzione delle specifiche condizioni operative

La coltivazione delle colture orticole sotto serra in Sicilia è prevalentemente su suolo (suoli sabbiosi) e non strettamente in fuori suolo. Importanza di non salinizzare nel tempo il terreno.

Quest'ultima riflessione ci impone di preparare i suoli con una concimazione di fondo che ci permetta di ridurre al massimo l'apporto fertirriguo nel proseguo della coltivazione e che non influisca negativamente sulla salinità in eccesso del suolo, un'ottima soluzione è l'utilizzo del concime Polysulphate®.

Monitoraggio della qualità dell'acqua irrigua e

della fertilità del suolo

Analizzare l'acqua irrigua per verificare la compatibilità all'uso irriguo. Tale analisi non è la stessa per la potabilizzazione, si devono ricercare in particolare Bicarbonati e Carbonati

			colturo o ni	eno campo	coltura in t	fuari cuala				
					colture in fuori suolo					
DATI ANALITICI		u.m.	Set an	alitico	Set analitico					
reazione	pН	numero	Base		Base					
Conducibilità	EC	mS/cm	Base		Base					
Sodio	Na⁺	mg/l	Base		Base					
Potassio	K ⁺	mg/l	Base		Base					
Calcio	Ca ²⁺	mg/l	Base		Base					
Magnesio	Mg ²⁺	mg/l	Base		Base					
Cloruri	Cl	mg/l	Base	-10	Base					
Zolfo da Solfati	S-SO ₄ ²⁻	mg/l	MILE	Completa	Base					
Fosforo da fosfati	P-PO ₄ 3-	mg/l	Base		Base					
Azoto nitrico	N-NO ₃	mg/l	Base		Base					
Azoto ammoniacale	N-NH ₄ ⁺	mg/l		Completa	Base					
Carbonati	CO ₃ ²⁻	mg/l	Base		Base					
Bicarbonati	HCO ₃	mg/l	Base		Base					
Solidi Totali Sospesi	STS	mg/l		Completa		Completa				
Solidi Totali Disciolti	TDS	mg/l		Completa		Completa				
Ferro	Fe	mg/l		Completa	Base					
Boro	В	mg/l		Completa	Base					
Manganese	Mn	mg/l		Completa	Base					
Molibdeno	Mo	mg/l		Completa	Base					
Rame	Cu	mg/l		Completa	Base					
Zinco	Zn	mg/l		Completa	Base					
Riferimenti metodi analitici e bibliografia:										

D.M. 23 marzo 2000 - Approvazione dei «Metodi ufficiali di analisi delle acque per uso agricolo e zootecnico» Gazz. Uff. 13 aprile 2000, n. 87, S.O.

APAT e IRSA-CNR - Manuali e Linee Guida 29/2003 Metodi analitici per le acque

Programmare una fertirrigazione proporzionale per gestire al meglio la concentrazione di concime sulla pianta e limitare la salinizzazione dei terreni

Necessario gestire l'iniezione della soluzione concentrata in modo proporzionale al volume d'adacquamento per avere la concentrazione voluta in g/litro di concime in ogni litro che arriva alla radice per non eccedere in salinità. Per ridurre gli effetti di salinizzazione si devono fare apporti di concime granualre a massima efficienza per evitare effetti residuali nel terreno.

Si possono utilizzare in fertirrigazione in modo mirato anche idrolizzati proteici e estratti umici per

- mitigare la salinità indotta dai Sali residui tramite una loro complessazione
- Favorire l'assorbimento degli elementi nutritive
- Fitostimolare l'attività radicale

Esempio di piano di concimazione per

pomodoro

Riporto di seguito un esempio di piano di concimazione per pomodoro che andremo a realizzare nella prova di concimazione in collaborazione con Agrigeos Srl

fase	n°settimane dal trpainto	Formulato	Z	P_2O_5	K ₂ O	CaO	MgO	SO ₃	kg/1000mq nei concimi idrosolubili dose a settimana	Z	P,O _c	, O, A	CaO	MgO	SO ₃
lavorazioni pretrapianto preparazione terreno	- 1	Polysulphate Premium	bo		14	16	5,5	48	50	0,0	0,0	7,0	8,0	2,8	24,0
da post trapianto alla comparsa primo grappolo	3	Solinure FX 13.40.13	13	40	13				3,5	1,4	4,2	1,4	0,0	0,0	0,0
		Idrolizzato Proteico (Aminoacidi)	7						1,5	0,3	0,0	0,0	0,0	0,0	0,0
da 1° grappolo fiorale fino alla comparsa del 4° grappolo fiorale	4	Solinure FX 15.5.30	15	5	30				3	1,8	0,6	3,6	0,0	0,0	0,0
		Idrolizzato Proteico (Aminoacidi)	7						1,5	0,4	0,0	0,0	0,0	0,0	0,0
		Nova Plus CalMag+TE	13			18	5		1,8	0,9	0,0	0,0	1,3	0,4	0,0
dal 4° grappolo fiorale alla cimatura (10 grappoli)	6	Solinure FX 15.5.30	15	5	30		2		5	4,5	1,5	9,0	0,0	0,6	0,0
		Nova Plus CalMag+TE	13			18	5		1,5	1,2	0,0	0,0	1,6	0,5	0,0
dalla cimatura a fine ciclo	3	Solinure FX 15.5.30	15	5	30				4,5	2,0	0,7	4,1	0,0	0,0	0,0
		Nova Plus CalMag+TE	13			18	5		1,5	0,6	0,0	0,0	0,8	0,2	0,0
numero settimane	16									13,1	7,0	25,0	11,7	4,4	24,0
numero giorni	112														
									UF (kg/Ha)	131	70	250	117	44	240

